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Abstract—Previous state-of-the-art studies have demonstrated
that adversaries can access sensitive user data by membership
inference attacks (MIAs) in Federated Learning (FL). Intro-
ducing differential privacy (DP) into the FL framework is an
effective way to enhance the privacy of FL. Nevertheless, in
differentially private federated learning (DP-FL), local gradients
become excessively sparse in certain training rounds. Especially
when training with low privacy budgets, there is a risk of
introducing excessive noise into clients’ gradients. This issue
can lead to a significant degradation in the accuracy of the
global model. Thus, how to balance the user’s privacy and
global model accuracy becomes a challenge in DP-FL. To this
end, we propose an approach, known as differential privacy
federated aggregation, based on significant gradient protection
(DP-FedASGP). DP-FedASGP can mitigate excessive noises by
protecting significant gradients and accelerate the convergence of
the global model by calculating dynamic aggregation weights for
gradients. Experimental results show that DP-FedASGP achieves
comparable privacy protection effects to DP-FedAvg and cpSGD
(communication-private SGD based on gradient quantization)
but outperforms DP-FedSNLC (sparse noise based on clipping
losses and privacy budget costs) and FedSMP (sparsified model
perturbation). Furthermore, the average global test accuracy of
DP-FedASGP across four datasets and three models is about
2.62%, 4.71%, 0.45%, and 0.19% higher than the above methods,
respectively. These improvements indicate that DP-FedASGP is
a promising approach for balancing the privacy and accuracy of
DP-FL.

Index Terms—Federated learning, differential privacy, signifi-
cant gradient protection

I. INTRODUCTION

Federated Learning (FL) [1] has gained substantial attention
in the field of distributed machine learning frameworks. FL
can protect users’ privacy by enabling multiple parties to train
machine learning models without sharing raw data. However,
as illustrated in Challenge 1 in Fig. 1, Hu et al. [2] demon-
strated a persistent risk of privacy breaches in training data,
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Fig. 1. Privacy leakage by MIAs in Federated Learning.

due to the fact that external adversaries can infer sensitive user
data characteristics by Membership Inference Attacks (MIAs).
Differentially Private Federated Learning (DP-FL) introduces
controlled random noise into the gradient before uploading to
address this issue. Moreover, as depicted in Challenge 2 in
Fig. 1, in DP-FL, excessive noise added to the gradient can
lead to a significant degradation in the global model accuracy.
Additionally, in DP-FL, local gradients become excessively
sparse in certain training rounds. Especially when training with
low privacy budgets, gradient sparsification can give rise to an
abundance of noise in the uploaded gradients. This will also
lead to a decrease in global model accuracy [3]. Therefore, to
the best of our knowledge, we found that the crucial control
over the addition of noise is still a gap that needs to be filled.

Motivated by these aforementioned issues, we aim to im-
prove the model accuracy and availability while ensuring
privacy protection by balancing privacy and accuracy of DP-
FL. Exploring a fine-grained balance between privacy and
accuracy has long been a critical topic of DP-FL [4], [5]. We
find that most researchers aim to balance privacy protection
and model accuracy in two primary ways.

1) Gradient Sparsification: During model training, sparsifi-
cation can simplify the model complexity and reduce the risk
of privacy disclosure by zeroing certain parameters [6]. Typ-
ically, these parameters pertain to less sensitive information,
and setting them to zero has a minimal effect on the model
performance. Weng et al. [7] proposed an FL framework that
improved model accuracy by implementing sparse gradients
and momentum gradient descent on both the server and
client sides. SDGM [8], a sparse differential Gaussian-masking
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distributed SGD approach, combines sparsification techniques
with Gaussian perturbation to ensure privacy guarantees within
centralized stochastic gradient descent algorithms. However,
when training with low privacy budgets, these methods may
introduce excessive noise into the uploaded gradients, leading
to a significant degradation in global model accuracy.

2) Protecting Significant Gradients: Significant gradients
typically contain highly sensitive information about model
parameters. Choosing to protect significant gradients instead
of all model parameters can reduce privacy-related overhead
and the influence of noise on model accuracy. Previous work
[9] determined that most gradient values for client updates
are small, close to zero. Consequently, clients should only
protect significant gradients (values far from zero) to mitigate
privacy budget consumption. DP-FedSNLC [10] ascertains the
significance of a gradient by evaluating alterations in the
loss function and only introduces noise perturbations into
significant gradients. Nevertheless, DP-FedSNLC has strong
privacy protection in the early stages of global model training
but slower model updates and reduced privacy protection
in the later stages. In conclusion, finding a new way to
precisely capture the balance between privacy and accuracy
by protecting significant gradients is a challenge in DP-FL.

Given the state-of-the-art studies and the challenges de-
scribed above, we propose Differential Privacy Federated
Aggregation based on Significant Gradient Protection (DP-
FedASGP), by integrating the idea of gradient sparsification
and significant gradients protection (SGP). DP-FedASGP can
prevent excessive noise addition by only protecting significant
gradients and accelerate global model convergence by calcu-
lating dynamic aggregation weights for the gradients. Thus,
DP-FedASGP can effectively balance the privacy and model
accuracy of DP-FL, particularly under low privacy budgets.

The contributions of our paper are depicted as follows.
• Originality. We prove that introducing Laplace noise into

partial significant gradients can successfully satisfy the
definition of ε-DP. To mitigate excessive noise addition,
we propose a threshold calculation method to evaluate
and protect significant gradients.

• Methodology. To expedite the convergence of the global
model, we propose a dynamic gradient aggregation
method that can dynamically calculate gradient weights
and aggregate global gradients.

• Effectiveness. We prove the privacy guarantee and con-
vergence of DP-FedASGP. Experiment results demon-
strate that DP-FedASGP can effectively improve the ac-
curacy and availability of the global model while ensuring
the privacy protection of DP-FL.

The remainder of this paper is organized as follows. Section
II presents the related work. The proposed framework is
shown in Section III. The design details of DP-FedASGP are
discussed in Section IV. The experiments and analysis are
given in Section V. Finally, Section VI draws the conclusion.

II. RELATED WORK

A. Privacy-Preserving FL
SAFARI (sparsity-aware FL framework) [11] is designed to

improve communication efficiency and reduce biases. SAFARI

leverages the similarities among client models to correct and
compensate for biases caused by unreliable communication.
FedDST (federated dynamic sparse training) [12] focuses on
dynamically extracting and training sparse subnetworks from
the global network target. This approach allows each client
to efficiently train its unique sparse network, reducing the
need to transmit the complete model between devices and
the cloud. Dai et al. [13] utilized a decentralized point-to-
point communication protocol to propose Dis-PFL. Building
upon the premise of gradient sparsification, DP-SIGNSGD [14]
is proposed based on the concept of gradient sparsification
to tackle privacy concerns in the SIGNSGD (the sign of
each coordinate of the stochastic gradient vector) algorithm.
To enhance privacy guarantees, FedSMP (sparsified model
perturbation) [39] can sparse the local model on each client
before adding noise perturbation.

However, in DP-FL, local gradients become excessively
sparse in certain training rounds. When training with low
privacy budgets, the aforementioned methods may introduce
excessive noise into the gradient, leading to a decline in the
accuracy of the global model. If the noise is reduced too
much, it may not achieve the target level of privacy protection.
Therefore, how to reasonably adjust the gradient noise addition
to balance privacy protection and model accuracy has become
an important challenge in DP-FL.

B. Privacy-Accuracy Trade-off
Hu et al. [31] proposed Adp-PPFL (adaptive privacy-

preserving FL), where the server allocates a privacy budget to
each client. Clients adjust the clipping threshold for gradient
clipping based on the allocated privacy budget and training
rounds. However, the privacy budget refers to users’ tolerance
for privacy leakage, and most users participating in FL have
their own privacy budgets. Adp-PPFL allocates privacy bud-
gets to users from the server, which may lead to discrepancies
between the allocated privacy budget and users’ actual situ-
ations, thereby the level of privacy protection may not meet
users’ expectations effectively. To share specific parameters
from local gradients selectively, Zhao et al. [15] introduced
Gaussian noise before sharing, required the determination of
the amount of noise, and controlled privacy leakage through
parallel training. By introducing a proxy mediation between
the client and the server, the server cannot distinguish which
client received the gradient. Wang et al. [16] illustrated that
alterations in gradients served as a pivotal metric for gauging
the susceptibility of training data to information leakage
risks, and they introduced a defense strategy accordingly. By
introducing gradient perturbations aligned with information
leakage risks, this approach can reduce defense expenditures
while upholding privacy protection. CEEP-FL (communication
efficiency with enhanced privacy FL) [17] applies a filtering
mechanism. This mechanism involves uploading only the
significant gradients. To elevate model accuracy and preserve
the privacy of distinct owner datasets, FDPBoost (federated
differential privacy gradient boosting decision tree) [18] is
proposed. This approach identifies sensitive features based on
secure feature set indicators and assigns significant weights to
protect leaf node values using the Laplace mechanism.
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Fig. 2. The overview of DP-FedASGP. ① Global model delivery. ② Calculate
the significance threshold. ③ Gradient aggregation. ④ Update global model.

Nevertheless, the above methods require complex crypto-
graphic techniques or mathematical mechanisms, which may
lead to increased computational and communication costs.
Besides, cross-device communication between clients, servers,
and proxy devices not only increases system complexity and
latency but also introduces additional privacy and security
risks. Therefore, there is an urgent need to design a reason-
able and effective gradient significance evaluation method to
protect partial significant gradients, thus we can save privacy
budgets and improve model accuracy.

III. PROPOSED FRAMEWORK

A. System Model

As shown in Fig. 2, the system model consists of a parame-
ter server and a set of clients K = {1, 2, . . . , i, . . . , k}. Client
i (∀i ∈ K) has its local privacy dataset Di and collectively
trains a global model with parameters W while ensuring
its protection with DP. Client i iterates locally for E times
to update its local model Mi and introduces noise N into
the significant gradients. Subsequently, client i uploads the
processed gradient gt(i), local model training loss Li(Wt)
and local data size ni to the server. The server computes the
gradient aggregation weight γt(i) and aggregates the global
gradient gi by considering gt(i) and γt(i). After that, the
parameter server updates the global model parameters Wt+1.
These above steps are iterated until the global model converges
and attains the desired performance. The main symbolic pa-
rameters are shown in Table I.

After T training rounds, the noise introduced into the
gradients will be scaled to N . With low privacy budgets, it will
lead to higher noise level σ. In each training round, gradients
exceeding the threshold λt will be perturbed, while the re-
maining gradients retain their original values. The perturbation
method for the gradients and σ are given by

gt(i) =

{
g′t(i) +N if g′t(i) + α ≥ λt + β

g′t(i) otherwise
, (1)

σ =
∆S

ε

√
2 ln(

1.25

ζ
), (2)

where gt(i) is the gradient uploaded by the client i in the
t-th training round, g′t(i) is the locally clipped gradient, ∆S
is global sensitivity, and ζ = e−ε is noise level. At the same
time, the weights for aggregating the gradients uploaded by
each client are often fixed. However, when the local data of
clients are equal and non-I.I.D. (non identical and independent
distribution), perturbing partial gradients and aggregating the
global gradients based on FedAvg [19] will slow down the
convergence of the global model. To expedite the parameter
server in aggregating the global gradients, we propose a novel
method detailed as

gt =

k∑
i=1

γt(i)gt(i), (3)

where gt is the global aggregated gradient, γt(i) ∈ [0, 1] is the
weight of gt(i), and

∑
γt(i) = 1. Section IV-C will expose the

gt(i) perturbation method and the γt(i) calculation method.

B. Local ε-Differential Privacy
The definition of DP can be associated with a privacy

budget ε (a non-negative real number). A smaller ε indicates
a higher level of privacy protection that users require. The
definition of ε-DP [38] can ensure the privacy leakage caused
by randomness or noise in a single query will not exceed
the threshold of ε. Since our method only perturbs partial
significant gradients with noise, which changes the definition
conditions of Laplace noise for DP. Therefore, it is necessary
to rigorously prove whether DP-FedASGP satisfies ε-DP, i.e.,
to reevaluate its compliance with the following definition

Pr[M(D) = O] ≤ eε Pr[M(D′) = O], (4)

where M is the noise algorithm, e is the base of
the natural logarithm, Pr[·] is the probability, M(D) =
(x1, ..., xwd, ..., xd)

T , M(D′) = (x1 + ∆x1, ..., xwd +
∆xwd, ..., xd)

T , and O is the output vector. For any query
result O, DP can guarantee that the probability ratio of
generating this result with the current privacy mechanism on
sibling datasets D and D′ will not exceed eε. Section IV-A
will give the privacy guarantee of DP-FedASGP.

C. Threat Model
Similar to the previous works [29], [30], we assume that

all clients participating in FL training are honest-but-curious
and the parameter server is honest and trustworthy. Our
threat model assumes that external adversaries attempt to infer
whether each sample in the given input dataset (target dataset)
belongs to the training set of the client model (target model).
Therefore, we choose MIAs to evaluate the privacy protection
performance of DP-FedASGP. Adversaries first access the
client model interface and submit a series of query requests.
Subsequently, adversaries collect the model’s responses to the
query requests and utilize the collected model responses to in-
fer whether specific membership identities or data features are
contained within the response results through analysis methods
and algorithms. Adversaries aim to determine whether a query
record belongs to the training dataset of the target model. To
ensure an equal number of members and non-members, we use
equal-sized sets to maximize the uncertainty of the inference.



4

TABLE I
LIST OF MAIN SYMBOLIC PARAMETERS

Symbol Symbol Meaning
K Client Set
k Total number of clients
σ Noise standard deviation
ε Privacy budget
d Dimensions of global model
η Learning rate
ζ Noise level
q Scale parameter of noise distribution
ω Gradient selection coefficient
δ Relaxation term of noise
ni Local data size of client i
λt Perturbation threshold
gt Global gradient in t-th training round
N Noise
T Training rounds
E Local iterations
B Local batch size
C Fixed clipping threshold
W Global model parameters
Di Local privacy dataset of client i
Lt Global model training loss of clients
∆S Global sensitivity
γt(i) Aggregation weight of client i
α, β Noise for evaluating query results
D,D′ Sibling datasets
Li(Wt) Loss function for client i

IV. GRADIENT PERTURBATION AND AGGREGATION

A. Privacy Analysis
To offer more rigorous and improved privacy protection and

to facilitate the combined use of various DP mechanisms,
we choose Laplace noise [20] as the perturbation source.
The Laplace noise can satisfy the ε-DP definition. Compared
with Gaussian noise [21], Laplace noise can provide more
stringent privacy safeguards at the expense of compromising
information accuracy. However, DP-FedASGP will change the
definition conditions of Laplace noise for DP. To provide
security proof, this section will start with the definition of ε-
DP and discuss how DP-FedASGP satisfies Laplace-based DP
for partial gradients. We aim to prove that introducing Laplace
noise into partial gradients can satisfy the requirements of ε-
DP definition. We give Definitions 1 and 2.

Definition 1. The general definition of DP is: Given a pair of
sibling datasets D and D′, for a function Fmodel : D → Rd

that represents the mapping relationship from dataset D to a
d-dimensional space, it has a sensitivity ∆S.

Definition 2. The probability density function of the Laplace
distribution for the random variable x is defined as

Lap(x | µ, b) = 1

2b
e−

|x−µ|
b , (5)

where µ is the location of the introduced noise, while the
variance is 2b2.

Suppose that Laplace-distributed noise Laplaced(∆S
ε ) can

satisfy the ε-DP definition. For any domain function Fmodel

with input X , the formal representation after introducing noise
is given by

Fmodel(X) + Laplaced(
∆S

ε
), (6)

where ∆S
ε is the scale parameter of the Laplace distribution.

In order to simplify the proof process without affecting the
generalization of the results, we give Assumptions 1 and 2.

Assumption 1. For any domain function Fmodel with input
dataset D, Fmodel is given by

Fmodel(D) = (x1, x2, ..., xd)
T . (7)

Assumption 2. For any random variable xi in dataset D,
xi = 0.

Using these conditions, we can make our proof without
losing generality. We give Theorem 1.

Theorem 1 (Privacy Guarantee of DP-FedASGP). If (6) is
feasible and Assumptions 1, 2 hold, then introducing Laplace
noise into partial significant gradients can satisfy the definition
of ε-DP and ensure the privacy of gradients.

Proof. Please refer to Appendix A.

According to Theorem 1, it can be concluded that introduc-
ing Laplace noise into partial significant gradients can ensure
the privacy of the gradients. Therefore, DP-FedASGP does not
affect the convergence of the global model.

B. Gradient Perturbation Mechanism

We aim to provide stricter and more robust privacy protec-
tion while facilitating the joint use of multiple DP mechanisms.
As shown in Fig. 3, for client i, after computing the local
λt, α, and β, noise is introduced into the query results that
exceed λt in d queries. We combine DP with Laplace noise,
referred to as (ε, δ)-DP. When the relaxation term δ = 0, the
random algorithmM can satisfy the ε-DP definition. We give
Definitions 3 and 4.

Definition 3. Given a random algorithmM and input datasets
D, D′, the formal definition of ε-DP is defined as

Pr [M(D) ∈ S] ≤ eεPr [M(D′) ∈ S] + δ, (8)

where S ⊆ Range(M) and δ = 0.

Definition 4. Given sequentially executed random algorithms
M1 andM2 satisfy ε1-DP and ε2-DP, respectively.M1,M2

satisfy (ε1 + ε2)-DP, which is defined as

Pr[M(D)] ≤ eε1+ε2 Pr[M(D′)]. (9)

The precise query result of input x on dataset D is repre-
sented as R(x,D), and N is the noise that follows a Laplace
distribution. The query result Q with Laplace noise introduced
to satisfy ε-DP is given by

Q = R(x,D) +N. (10)

Then, let Lap(∆S/ε) denote the Laplace noise N that
satisfies the ε-DP definition, which is given by

Pr(N) =
ε

2∆S
e−

ε
∆S |N|. (11)

According to the composition theorem of DP mechanisms
that satisfy the Laplace distribution in FL, the simultaneous
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execution of multiple queries will result in a linear increase in
the consumed privacy budget. Let d denote the dimension of
the FL model and x is the input parameters of the d queries,
the update of d parameters by a single client is equivalent to
answering d queries concurrently. The accurate query result
of input x on dataset D is denoted as R(x,D) ∈ Rd, and the
query result with Laplace noise satisfying ε-DP is denoted as
Q(x, ε), which is given by

Q(x, ε) = R(x,D) +N(ε). (12)

To reduce the privacy budget consumption of simultane-
ously executing multiple queries, we introduce the idea of
sparse vectors [22]. Laplace noise is only introduced when the
queried content is deemed significant. Otherwise, no operation
is performed. Specifically, in a certain training round, if d
queries are requested, Laplace noise is introduced only when
Rd(x,D) + α ≥ λ+ β, then we have

Ad = Rd(x,D) +Nd, (13)

where Ad is the query result after applying Laplace noise
perturbation for query d, λ is the threshold for determining
the importance of the queried content, and q is the scale
parameter of Laplacian noise distribution. α and β are ad-
ditional noise that evaluate the importance of the query result,
which follow the Laplace noise distributions Lap(q∆S/ε1)
and Lap(q∆S/ε2), respectively. Nd is the noise used to
perturb the query result, which follows the Laplace noise
distribution Lap(q∆S/ε3).

However, the premise of using the above gradient per-
turbation method is that the total privacy budget ε satisfies
ε = ε1 + ε2 + ε3. Therefore, we need to prove Theorem 2.

Theorem 2. If (13) is feasible, then the proposed DP-
FedASGP can introduce Laplace noise into partial significant
gradients, and the total privacy budget ε = ε1 + ε2 + ε3.

Proof. Please refer to Appendix B.

Due to ε3 can affect the perturbed gradient values returned
to the server, so ε3 ≫ ε1 + ε2. If ε3 is too small, it will
significantly reduce the model accuracy in FL. Conversely,
even if ε1 + ε2 is very small, perturbation will only occur
when selecting valid gradients. When ε1+ ε2 is a fixed value,
the privacy budget ratio ε1 : ε2 = 3

√
q2 : 1. Meanwhile, the

threshold λ is used to determine the importance of the queried
content. We incorporate the idea of the Top-k [23] method
into the selection of λ. We set different thresholds λ for
different training rounds. In the early training rounds, when
the parameters change dramatically and there is more gradient
information, a larger threshold λ is set to accelerate the model
convergence. In the later training rounds, when the parameters
tend to stabilize and there is less gradient information, a
smaller threshold λ is set to save the privacy budget. The
calculation of the threshold λt is given by

λt = min(sort(g′)[

⌈
t|W |
T

⌉
], sort(g′)[

⌈
9|W |
10

⌉
]), (14)

where |W | is the total number of model parameters, sort(·)
is the sorting result in ascending order, and g′ is the locally
clipped gradient.

C. Gradient Aggregation Mechanism

The most commonly referenced algorithm in FL is the
FedAvg algorithm, in which the weights of the gradients are
typically fixed and determined based on the size of local
training data. After T training rounds, the global model
objective is

min

k∑
i=1

ni
n
Li(W ), (15)

where Li(W ) is the loss function used to train the local model
of client i, n =

∑k
i=1 ni is the total data size, and ni is the

local data size of client i. The impact of local loss on the global
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Algorithm 1: DP-FedASGP
Input: k clients, Di, B, E, T , C, ∆S, ε1, ε2, η, σ
Output: Global model parameters W

1 Initialize W , Wt

2 for each training round t ∈ T do
3 for each client i in parallel do
4 W ←Wt

5 gi, Li, ni ← clientTrain(W,Di, T, t)
6 end
7 L←

∑
Li, n←

∑
ni

8 γi ← niL+nLi

2nL
9 g ←

∑
γigi

10 Wt+1 ←Wt − ηg
11 end
12 function clientTrain(W,Di, T, t)
13 begin
14 n← D
15 for each local epoch in E do
16 ge ← ∇L(W )
17 W ←W − ηge
18 end
19 g ←

∑
ge, L =

∑
∆M(W )e

20 g′ ← g

max(1,
∥g∥2
C )

21 α← Lap(∆S
ε1

), β ← Lap(∆S
ε2

)

22 λt = min(sort(g′)[
⌈
t|W |
T

⌉
], sort(g′)[

⌈
9|W |
10

⌉
])

23 if g′ + α ≥ λ+ β then
24 g ← g′ +N
25 else
26 g ← g′

27 end
28 return g, L, n
29 end

objective depends entirely on the local data size. We hope that
the global loss function can truly reflect the aggregated global
model by gradient aggregation weights on the server-side.
However, the accuracy of the gradients decreases after noise
is introduced, especially when partial gradients are perturbed.
The information contained in the gradients uploaded by each
client may be completely different from the previous values.

As shown in Fig. 2, based on the effectiveness of local
training, we dynamically calculate the gradient aggregation
weight γ in each training round. Let Li(Wt) denote the local
model training loss for client i in the t-th training round, the
total model training loss for client i is Lt =

∑k
i=1 Li(Wt).

Considering the influence of the local loss contained in the
global objective function, which depends entirely on the size
of the local data, the gradient aggregation weight γt(i) for
client i is given by

γt(i) =
niLt + nLi(Wt)

2nLt
, (16)

where
∑k

i=1
ni

n = 1
⋂∑k

i=1
Li(Wt)

Lt
= 1 always holds, and

the gradient aggregation weight |γt| =
∑k

i=1 γt(i) = 1 for
each client in each training round is always true.

D. Convergence Analysis

In this section, we prove the convergence of the DP-
FedASGP within the FL framework. We give Assumptions
3, 4 and Definition 5.

Assumption 3 (Lipschitz Smoothness). We assume that the
loss function L(·) is differentiable, and each client’s local
loss function ∇L(·) is l-Lipschitz continuous, i.e., ∀i ∈
{1, 2, . . . , k}

∥∇Li(W)−∇Li(W
′)∥ ≤ l∥W −W′∥. (17)

Assumption 4 (Bounded Gradient). By the nature of gradi-
ent descent, we assume that each client’s local gradient is
bounded. Therefore, there is a constant Mi such that for any
training round t and client i, we have

∥∇Li(Wt)∥ ≤Mi. (18)

According to the gradient descent method, the global gra-
dient gt can be expressed as the gradient of the global loss
function L(·), which is given by

gt = ∇L(Wt) =
1

k

k∑
i=1

∇Li(Wt)γt(i). (19)

Definition 5. The update rule of the global model parameter
W after the training round t is defined as

Wt+1 ←Wt − ηgt, (20)

where η is the learning rate and gt is the global gradient of
training round t.

In DP-FedASGP, a certain degree of Laplacian noise is
added to each client’s gradient gt(i) to protect the true
gradient and satisfy the ε-DP. At the same time, to prevent
the instability of the global model parameter update caused
by too large gradients, the gradient clipping function can limit
the gradient to a certain range. To prove the convergence of
DP-FedASGP, we need to prove Theorem 3.

Theorem 3 (Convergence Guarantee of DP-FedASGP). If
(19) is feasible and Assumptions 3, 4 hold, then the global
gradient gt after gradient clipping in each training round is
bounded and the global model parameters Wt can converge
to a finite value.

Proof. Please refer to Appendix C.

E. Algorithm Design

The gradient perturbation and aggregation process of DP-
FedASGP can be divided into three key stages:

1) Construct A Gradient Perturbation Method Based on
Sparse Vectors: Not every gradient from clients holds equal
significance. In each training round, we begin by computing
the threshold λt to evaluate gradient significance. Subse-
quently, employing decision criteria Rd(x,D)+α ≥ λt+β, we
only introduce noise into significant gradients gt(i). The total
privacy budget essential for global model training, denoted as
ε = ε1 + ε2 + ε3, determines the gradient information that
each client ultimately needs to upload.
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2) Build Dynamic Aggregation Weights Calculation Method:
In each training round, each client possesses a local model
training loss function Li(Wt). Therefore, we can calculate
the total model training loss Lt for all clients. The gradient
aggregation weight γt(i) in the current training round is
determined based on the data distribution.

3) Formulate The Global Model Gradient Aggregation
Method: For the parameter server, based on the perturbed
gradients uploaded by each client obtained in stage 1 and
the gradient aggregation weights obtained in stage 2, the final
global model aggregation is accomplished.

The details are shown in Algorithm 1. DP-FedASGP com-
prises the following steps: a) Initialize the server and client
models (line 1). b) In each communication round, client i
iterates local batch model training on their local privacy data,
computing gradients, and local loss (lines 15-18). c) Client i
computes the sparse inequality noise levels α and β (lines 19-
21). d) Client i calculates the noise perturbation threshold λ
and introduces noise into significant gradients based on the
sparse inequality (lines 22-28). e) Each client uploads the
perturbed gradients g, local loss L, and local data size n (line
5). f ) The server calculates the total training loss and total
data size and computes each gradient aggregation weight γi
(lines 7-8). g) The server aggregates the perturbed gradients
uploaded by clients based on the gradient aggregation weights
(line 9). h) The parameter server updates a new global model
and sends the new model to each client (line 10).

F. Complexity Analysis

In DP-FedASGP, each client performs local training and
updates its local model for E times, resulting in an algo-
rithmic complexity denoted as O(

∑E
e=1 |∇|e) = O(E). In

the FL framework with k clients participating in training, the
algorithmic complexity for computing local gradients is O(k).
As the clients are training models in parallel, the algorithmic
complexity is transformed into O(1). Assuming the parameter
server performs T training rounds, the overall complexity
of DP-FedASGP is expressed as O(ET ). Since E is much
smaller than T , i.e., E ≪ T , the overall complexity of the
DP-FedASGP algorithm is O(n).

V. PERFORMANCE EVALUATION

A. Experimental Settings

Experimental Environment. The experiments are con-
ducted with a parameter server and a group of clients par-
ticipating in FL training. PyTorch is used as the deep learning
framework, and the Python version employed is 3.6. The com-
puting nodes run on the 64-bit Ubuntu 20.04 LTS operating
system, with a CUDA driver version of 11.0. The CPU used
is an Intel(R) Xeon(R) Gold 6326 @2.90GHz, equipped with
256GB of RAM, 4TB of hard disk, and an NVIDIA A100
GPU with 80GB of GPU memory.

Datasets and Target Models. We employ 3 image datasets,
1 text dataset, and 3 target models. We use the Dirichlet
function Dir(φ = 1) [40] to divide the datasets for clients
to generate non-independent and identically distributed (non-
IID) training datasets. Note that the higher the φ value, the

more similar the distribution of the training dataset is allocated
among clients. Res50 represents ResNet-50 in Tables III, IV,V.

• MNIST [35] dataset consists of 60, 000 labeled training
images and 10, 000 labeled test images. The data com-
prises hand-written digit images representing all digits
from 0 to 9, with a fixed size of 28 × 28 pixels in
grayscale. We use a convolutional neural network (CNN)
model and a Residual Network (ResNet-50) for image
classification tasks. CNN consists of 2 convolutional
layers (5 × 5 and ReLU activation, each followed by
2×2 max pooling), 2 fully connected layers, and Softmax
normalizes the final output. ResNet-50 uses the same
default settings as the 50-layer architecture in [37].

• CIFAR-10 [36] and CIFAR-100 [36] datasets both consist
of 50, 000 labeled training images and 10, 000 labeled test
images. These images belong to 10 and 100 categories
respectively, with each category representing one of them.
The images are fixed-sized color images of 32×32 pixels.
We also use CNN and ResNet-50 for image classification
tasks. CNN consists of 2 convolutional layers (5× 5 and
ReLU activation, each followed by 2×2 max pooling), 3
fully connected layers, and Softmax normalizes the final
output. ResNet-50 is set up the same way as MNIST.

• Shakespeare [33] dataset is built from The Complete
Works of William Shakespeare. Similar to [34], each client
has one or more lines for training or testing. We train a
recurrent neural network (RNN) model for predicting the
next character. RNN takes a sequence of 80 characters as
input and consists of an embedding layer (80 × 8), two
LSTM layers (80× 256), and a dense layer (80× 90).

Baselines. We consider the following comparative methods.

• DP-FedAvg [24] was once the state-of-the-art DP variant
of the FedAvg algorithm. It implements client-level DP,
where each client uses a clipping threshold C for gradient
clipping, followed by adding noise N .

• cpSGD [25] combines gradient quantization and DP.
• DP-FedSNLC [10] introduces sparse noise into gradients

based on clipping losses and privacy budget costs.
• FedSMP-topk [39] is currently the state-of-the-art client-

level DP method for balancing accuracy and privacy
through sparsification. DP-FedSMP simplifies the local
model updates of clients by retaining only important
coordinate subsets and then adds noise to perturb the
retained coordinate values.

Hyperparameter Settings. SGD algorithm is used for local
gradient computation. The clipping threshold C = 1 and the
privacy budgets ε = {0.1, 0.2, 0.5, 1, 2, 4}. We randomly select
10% of the clients in each training round to participate in the
FL training. The details are shown in Table II.

Attack models. We consider the following threat models.

• Basic-MIA [32]: Threshold-based MIA. Adversaries com-
pute the prediction confidence of the target model on
a shadow dataset, then select a confidence threshold
that achieves the highest attack accuracy on the shadow
dataset. If the confidence of a queried record exceeds this
threshold, adversaries will infer the member record.
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TABLE II
DATASETS DETAILS AND HYPERPARAMETER SETTINGS

Datasets MNIST CIFAR-10 CIFAR-100 Shakespeare
Type Image Image Image Text

Models CNN CNN CNN RNNResnet50 Resnet50 Resnet50
Clients 100 100 100 715

Train Size 60,000 50,000 50,000 16,068
Test Size 10,000 10,000 10,000 2,356

Batch Size 128 128 128 4
Training Round 200 500 500 1,000
Learning Rate 0.1 0.05 0.05 1

• ML-Leaks (Adversary 1) [27]: Adversaries divide the
shadow dataset Dshadow into training datasets Dtrain

shadow

and testing datasets Dtest
shadow, and then train a shadow

model Mshadow based on the data from Dtrain
shadow. For

each record in Dshadow, adversaries select the three
largest posterior values from the output of Mshadow and
label them as 1 or 0 to train the attack model. Finally,
adversaries feed the three largest posterior values into the
attack model to obtain predictions about membership.

• White-box [28]: Adversaries train attack models on both
the training and testing datasets to learn the differences
in member inference. Adversaries process multiple ob-
served target model inputs simultaneously, capturing the
correlations between parameters in each training round.

• CS-MIA [26]: The state-of-the-art MIA. Adversaries first
divide the dataset into training datasets Dtrain and testing
datasets Dtest, and incorporate Dtrain into FL. Then,
adversaries compute the confidence series of the shadow
model on Dtrain and Dtest, constructing a labeled confi-
dence series set used for training the attack model. In
the inference phase, for a given target record dtarget,
adversaries compute the confidence series of the target
model on dtarget as the input to the pre-trained attack
model, finally determining the membership of dtarget.

Metrics. Various metrics of the experiments provide an
intuitive description of the model’s training performance.

• Privacy Protection: The experiments are designed to
assess the privacy protection performance of the five
methods. A lower accuracy of inference attacks in the
experimental results indicates better privacy protection.

• Global Model Availability: The experimental results indi-
cate that higher global test accuracy corresponds to higher
model training accuracy and availability. When training
with low privacy budgets, we should pay special attention
to the changes in the average global test accuracy during
model training.

• Applicability of DP-FedASGP: The experiments compare
the global test accuracy of the trained model to evaluate
the applicability of DP-FedASGP under higher privacy
budgets. Note that a higher average accuracy in the
experimental results indicates better applicability.

B. Privacy Protection

The most direct and intuitive way to evaluate the perfor-
mance of privacy protection is by incorporating inference
attack methods during the model training. Since the privacy

budget affects the overall accuracy of inference attacks, our
experiments choose the MNIST, CIFAR-10/100 datasets and
ε = {0.1, 0.2, 0.5}, using Basic-MIA, ML-Leaks, White-box,
and CS-MIA as attack methods for comparative experiments.
We will analyze the privacy protection performance of DP-
FedASGP and other methods. Note that a lower accuracy of
inference attacks in the experimental results indicates better
privacy protection. The results are shown in Table III.

1) Training with Different Privacy Budgets and Different
Model Training Methods: The Basic-MIA attacks perform the
worst, while the CS-MIA attacks perform the best. Given that
Basic-MIA is much simpler than the other inference attack
methods, the attack accuracy of Basic-MIA is the lowest across
all five training methods. Since CS-MIA attacks can access
more information on training and testing data, the effectiveness
of CS-MIA is better than that of ML-Leaks and White-box.

2) Training with Different Privacy Budgets and Different
Inference Attack Methods: As shown in Table III, cpSGD has
the lowest attack accuracy, so cpSGD has the best privacy
protection performance. This is because cpSGD combines
gradient quantization and DP, which can ensure privacy pro-
tection definitions. However, quantization does not scale the
amount of gradients. Instead, quantization adds some privacy
protections and makes inference attacks more challenging.
Therefore, cpSGD offers better privacy protection compared to
DP-FedASGP. DP-FedAvg has lower attack accuracy than DP-
FedSNLC, FedSMP, and DP-FedASGP. This is because DP-
FedAvg only prevents the addition of larger noise and utilizes
a fixed clipping threshold for gradient clipping. This leads
to more noise being introduced compared to DP-FedSNLC,
FedSMP, and DP-FedASGP. Hence, the privacy protection of
DP-FedAvg is second only to cpSGD and better than DP-
FedASGP. The attack accuracy of DP-FedSNLC is much
higher than the other methods, and it offers the worst privacy
protection performance. DP-FedSNLC introduces noise into
significant gradients based on the changes in the loss function.
In the early training stages, gradients change significantly,
while in the later stages, gradients gradually diminish. This
leads to strong privacy protection in the early stages of
global model training and weaker privacy protection in the
later stages. Therefore, DP-FedSNLC performs worse against
inference attacks compared to DP-FedASGP, especially under
complicated MIAs. FedSMP achieves higher attack accuracy
compared to DP-FedASGP because FedSMP sparsifies the
model before adding noise perturbation. The degree of model
sparsification cannot adapt well to changes in the privacy
budget, making it more susceptible to attacks.

DP-FedASGP has slightly higher attack accuracy than DP-
FedAvg and cpSGD but is significantly lower than DP-
FedSNLC and FedSMP. This indicates that the privacy pro-
tection performance of DP-FedASGP is slightly worse than
DP-FedAvg and cpSGD but significantly better than DP-
FedSNLC and FedSMP. This is because DP-FedASGP only
introduces noise into partial significant gradients and dynam-
ically computes the gradient significance threshold in each
training round. This results in less introduced noise compared
to DP-FedAvg and cpSGD but makes DP-FedASGP offer a
slightly weaker defense against inference attacks compared to



9

TABLE III
ATTACK ACCURACY OF DIFFERENT ATTACK METHODS WITH DIFFERENT TRAINING METHODS

Privacy Model Method MNIST CIFAR-10 CIFAR-100
Budget (DP-) Basic-MIA ML-Leaks White-box CS-MIA Basic-MIA ML-Leaks White-box CS-MIA Basic-MIA ML-Leaks White-box CS-MIA

0.1

CNN

FedAvg [24] 50.01% 50.02% 50.02% 51.09% 50.86% 51.42% 53.61% 65.46% 51.45% 53.42% 55.01% 65.72%
cpSGD [25] 50.01% 50.01% 50.02% 51.09% 50.73% 51.31% 53.57% 65.31% 51.24% 53.31% 54.96% 65.67%

FedSNLC [10] 50.09% 50.21% 50.24% 51.15% 51.38% 58.84% 62.59% 67.19% 54.77% 60.26% 65.86% 67.25%
FedSMP [39] 50.06% 50.15% 50.20% 51.17% 51.04% 51.87% 54.76% 65.85% 51.95% 54.23% 55.93% 66.10%

FedASGP 50.04% 50.09% 50.11% 51.15% 50.89% 51.80% 54.38% 65.49% 51.92% 54.18% 55.84% 65.91%

Res50

FedAvg 50.01% 50.01% 50.01% 51.03% 50.47% 51.17% 53.07% 64.80% 51.07% 52.31% 54.26% 65.21%
cpSGD 50.01% 50.01% 50.01% 51.02% 50.45% 51.08% 53.06% 64.67% 51.05% 52.18% 54.15% 65.19%

FedSNLC 50.03% 50.17% 50.20% 51.11% 50.84% 57.93% 60.82% 66.59% 53.17% 59.30% 62.68% 67.04%
FedSMP 50.03% 50.10% 50.15% 51.08% 50.63% 51.49% 53.95% 64.97% 51.46% 52.90% 55.15% 65.66%

FedASGP 50.01% 50.05% 50.07% 51.06% 50.52% 51.32% 53.67% 64.82% 51.20% 52.92% 54.27% 65.27%

0.2

CNN

FedAvg 50.04% 50.18% 50.35% 51.28% 53.07% 55.12% 60.47% 70.91% 55.63% 58.03% 61.76% 71.21%
cpSGD 50.03% 50.16% 50.23% 51.22% 52.99% 55.06% 60.42% 70.85% 55.49% 57.65% 61.64% 71.06%

FedSNLC 50.15% 50.27% 50.55% 51.35% 55.56% 60.69% 67.19% 73.21% 58.46% 65.88% 69.49% 73.85%
FedSMP 50.13% 50.25% 50.43% 51.31% 53.63% 55.39% 60.75% 71.54% 55.87% 58.98% 62.21% 71.73%

FedASGP 50.09% 50.21% 50.36% 51.30% 53.58% 55.33% 60.70% 71.35% 55.84% 58.91% 62.07% 71.57%

Res50

FedAvg 50.02% 50.11% 50.24% 51.19% 52.26% 54.57% 59.65% 66.94% 54.42% 55.23% 60.11% 67.26%
cpSGD 50.02% 50.08% 50.16% 51.18% 52.21% 54.41% 59.59% 66.88% 54.34% 55.11% 60.01% 67.18%

FedSNLC 50.07% 50.20% 50.41% 51.27% 52.55% 58.33% 65.88% 69.10% 56.11% 59.45% 67.82% 69.84%
FedSMP 50.05% 50.18% 50.37% 51.24% 52.46% 54.68% 60.12% 67.06% 54.65% 55.40% 60.57% 67.75%

FedASGP 50.03% 50.14% 50.28% 51.22% 52.41% 54.61% 59.92% 67.04% 54.54% 55.28% 60.45% 67.34%

0.5

CNN

FedAvg 50.13% 50.39% 50.83% 51.46% 55.24% 59.32% 65.23% 73.85% 60.29% 63.22% 68.10% 74.49%
cpSGD 50.10% 50.36% 50.81% 51.40% 55.08% 59.25% 65.17% 73.67% 60.02% 63.07% 67.70% 74.33%

FedSNLC 50.26% 50.52% 50.91% 51.55% 58.91% 62.84% 70.36% 78.72% 64.41% 70.15% 73.63% 78.97%
FedSMP 50.19% 50.49% 50.88% 51.52% 55.49% 59.52% 65.68% 74.39% 60.73% 64.10% 68.41% 74.89%

FedASGP 50.17% 50.44% 50.86% 51.48% 55.45% 59.47% 65.60% 74.11% 60.74% 64.06% 68.34% 74.65%

Res50

FedAvg 50.06% 50.26% 50.54% 51.35% 54.15% 58.46% 63.91% 71.98% 58.52% 60.66% 65.51% 72.59%
cpSGD 50.05% 50.21% 50.53% 51.32% 54.12% 58.22% 63.85% 71.57% 58.46% 60.49% 65.36% 72.51%

FedSNLC 50.19% 50.44% 50.65% 51.49% 58.08% 61.51% 66.72% 75.62% 61.43% 64.33% 70.15% 75.22%
FedSMP 50.14% 50.33% 50.59% 51.41% 54.80% 58.50% 64.10% 72.45% 58.60% 60.75% 65.97% 72.98%

FedASGP 50.11% 50.30% 50.58% 51.34% 54.64% 58.45% 64.05% 72.42% 58.57% 60.70% 65.85% 72.86%

TABLE IV
GLOBAL TEST ACCURACY WITH DIFFERENT PRIVACY BUDGETS FOR

DIFFERENT TRAINING METHODS

Privacy Method MNIST CIFAR-10 CIFAR-100 Shakespeare
Budget (DP-) CNN Res50 CNN Res50 CNN Res50 RNN

0.1

FedAvg [24] 88.34% 89.10% 34.49% 45.73% 10.36% 26.21% 20.16%
cpSGD [25] 85.53% 86.42% 31.92% 44.27% 8.92% 24.91% 18.90%

FedSNLC [10] 90.74% 91.47% 39.82% 49.69% 13.94% 27.44% 22.34%
FedSMP [39] 91.02% 92.11% 40.55% 51.06% 14.29% 27.87% 22.95%

FedASGP 91.16% 92.53% 40.96% 51.35% 14.34% 28.05% 23.04%

0.2

FedAvg 91.68% 92.74% 42.88% 56.10% 16.17% 33.51% 27.87%
cpSGD 89.15% 90.11% 39.51% 54.53% 14.89% 32.11% 26.32%

FedSNLC 92.92% 94.45% 46.53% 57.31% 18.91% 34.37% 28.85%
FedSMP 93.10% 94.59% 46.72% 57.45% 19.38% 34.50% 29.06%

FedASGP 93.24% 94.80% 46.90% 57.65% 19.44% 34.82% 29.18%

0.5

FedAvg 93.87% 94.33% 48.36% 65.23% 20.21% 39.80% 31.46%
cpSGD 90.63% 91.55% 45.94% 62.98% 18.31% 38.15% 30.12%

FedSNLC 94.28% 95.40% 51.94% 66.74% 22.15% 41.40% 33.07%
FedSMP 94.53% 95.43% 51.20% 66.81% 22.53% 41.39% 33.24%

FedASGP 94.75% 95.82% 51.37% 66.80% 22.63% 41.57% 33.41%

DP-FedAvg and cpSGD. Furthermore, we have compiled the
average attack accuracy of the four attack methods across CNN
and ResNet-50 under different privacy budgets and different
model training methods, details are shown in Fig. 4.

3) Training with Different Datasets and Different Privacy
Budgets: As shown in Fig. 4, DP-FedASGP exhibits slightly
higher average attack accuracy than DP-FedAvg and cpSGD
but significantly lower than DP-FedSNLC and FedSMP, espe-
cially when training models with high-complexity datasets.

4) Summary: DP-FedASGP is effective in defending against
inference attacks under low privacy budgets. The privacy
protection performance of DP-FedASGP is similar to DP-
FedAvg and cpSGD but significantly better than DP-FedSNLC
and FedSMP, especially when training with CIFAR-10/100.

C. Global Model Availability

In this section, by evaluating the availability of DP-FedSGP
using the global test accuracy of the model, we will prove
that DP-FedASGP can offer the best global model availability

TABLE V
AVERAGE GLOBAL TEST ACCURACY WITH DIFFERENT TRAINING

METHODS ON DIFFERENT DATASETS

Dateset Model DP- DP-FedAvg cpSGD DP-FedSNLC FedSMP
FedASGP [24] [25] [10] [39]

MNIST
CNN 93.05% 91.30% 88.33% 92.65% 92.88%

(-1.75) (-4.72) (-0.40) (-0.17)

Res50 94.38% 92.06% 89.36% 93.77% 94.04%
(-2.32) (-5.02) (-0.61) (-0.34)

CIFAR-10
CNN 46.40% 41.91% 39.12% 46.10% 46.16%

(-4.49) (-7.28) (-0.30) (-0.24)

Res50 58.60% 55.69% 53.93% 57.91% 58.44%
(-2.91) (-4.67) (-0.69) (-0.16)

CIFAR-100
CNN 18.80% 15.58% 14.04% 18.33% 18.73%

(-3.22) (-4.76) (-0.47) (-0.07)

Res50 34.81% 33.17% 31.72% 34.40% 34.59%
(-1.64) (-3.09) (-0.41) (-0.22)

Shakespeare RNN 28.54% 26.50% 25.11% 28.09% 28.42%
(-2.04) (-3.43) (-0.45) (-0.12)

Average 53.51% 50.89% 48.80% 53.04% 53.32%
(-2.62) (-4.71) (-0.45) (-0.19)

compared to the other four methods. As detailed in Table
IV and illustrated in Fig. 5 and Fig. 7, we present the
global test accuracy and average test accuracy results of DP-
FedAvg, cpSGD, DP-FedSNLC, FedSMP, and DP-FedASGP.
In addition, to more intuitively show the differences between
DP-FedASGP and other methods, we also provide the average
global test accuracy on four datasets in Table V. Note that a
higher global test accuracy in the experimental results indicates
higher model training availability.

1) The Lower The Privacy Budget, The Better The Availabil-
ity: As shown in Table IV, when training the CNN and ResNet-
50 with the MNIST dataset and privacy budget ε = 0.1,
DP-FedASGP demonstrates a substantial global test accuracy
improvement of approximately 2.82% and 3.43%compared to
DP-FedAvg, respectively. When ε = 0.5, DP-FedASGP still
outperforms DP-FedAvg, with a slightly reduced improvement
of about 0.88% and 1.49%, respectively. Similar trends are
observed during training with the CIFAR-10/100 and Shake-
speare datasets, where the increase in global test accuracy with
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Fig. 4. Average attack accuracy with different models and privacy budgets across CNN and ResNet-50.

Fig. 5. Average global test accuracy with different training methods and privacy budgets across CNN and ResNet-50.

Fig. 6. Global test accuracy with higher privacy budgets on CNN.

DP-FedASGP is more pronounced at ε = 0.1 compared to 0.5.
Therefore, DP-FedASGP can improve the availability of the
global model with low privacy budgets.

2) The More Complex The Dataset, The Better The Avail-
ability: When training with the relatively simple MNIST
dataset, the performance differences among these five methods
are not particularly significant. However, when training with
the CIFAR-10/100 and Shakespeare datasets, which exhibit
higher data complexity, DP-FedASGP stands out by achieving
the highest global test accuracy. In particular, during training
with complex datasets, characterized by moderate data com-

plexity, DP-FedASGP significantly outperforms DP-FedAvg
and cpSGD in terms of global test accuracy. DP-FedASGP
only introduces noise perturbation into partial significant gra-
dients in each training round and dynamically calculates the
gradient aggregation weights. These improvements in DP-
FedASGP can enhance the precision of gradient perturbation,
which is particularly beneficial for complex datasets.

3) The Average Global Test Accuracy: We average the global
test accuracy of ε = {0.1, 0.2, 0.5} on the four datasets,
DP-FedASGP has a higher average global test accuracy than
the other methods. As shown in Table V, DP-FedASGP
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张本腾
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Fig. 7. Global test accuracy on Shakespeare dataset.

TABLE VI
GLOBAL TEST ACCURACY WITH HIGHER PRIVACY BUDGETS FOR

DIFFERENT TRAINING METHODS ON CNN

Privacy Budget Method (DP-) MNIST CIFAR-10 CIFAR-100

0.1 FedAvg [24] 88.34% 34.49% 10.36%
FedASGP 91.16% 40.96% 14.34%

0.2 FedAvg 91.68% 42.88% 16.17%
FedASGP 93.24% 46.86% 19.44%

0.5 FedAvg 93.87% 48.36% 20.21%
FedASGP 94.75% 51.37% 22.63%

1 FedAvg 95.12% 52.73% 22.74%
FedASGP 95.83% 54.56% 25.04%

2 FedAvg 96.27% 55.87% 24.97%
FedASGP 96.68% 57.12% 26.77%

4 FedAvg 96.89% 58.10% 26.53%
FedASGP 97.32% 59.83% 27.87%

achieves a higher average global test accuracy than DP-
FedAvg, cpSGD, DP-FedSNLC, and FedMSP on the four
datasets, with improvements of approximately 2.62%, 4.71%,
0.45%, and 0.19%, respectively. cpSGD combines gradient
quantization and DP to ensure privacy protection definition.
However, since cpSGD quantizes gradients, it is equivalent
to introducing privacy noise perturbation. Therefore, under
the same privacy budget setting, cpSGD has the lowest
average global test accuracy. DP-FedAvg can only prevent
the addition of larger noise. Thus, DP-FedAvg introduces
more noise than DP-FedSNLC, FedSMP, and DP-FedASGP.
DP-FedSNLC evaluates the changes in the loss function to
determine whether gradients are important and then introduces
noise perturbation. FedSMP tends to overly sparsify the model
under low privacy budgets, leading to poor performance, but
FedSMP still effectively reduces the addition of noise. There-
fore, DP-FedAvg, DP-FedSNLC, and FedSMP outperform
cpSGD in terms of global test accuracy.

4) Summary: As the MNIST dataset has relatively low
complexity, these five methods exhibit similar global test
accuracy, and the precision improvement can be negligible.
However, for the CIFAR-10/100 and Shakespeare datasets,
with a significant increase in dataset complexity, the global test
accuracy of DP-FedASGP outperforms DP-FedAvg, cpSGD,
DP-FedSNLC, and FedSMP. When training with low privacy
budgets, the average global test accuracy of DP-FedASGP on
the four datasets is higher than other methods. Therefore, DP-
FedASGP can offer the best global model availability among
these five methods.

D. Applicability Analysis under Higher Privacy Budgets

In Sections V-B and V-C, the privacy protection perfor-
mance of DP-FedASGP is approximately equivalent to DP-
FedAvg and cpSGD. When training with low privacy budgets,
DP-FedASGP can offer better global model availability than
other methods. Therefore, in this section, we choose DP-
FedAvg as the comparative method. We will prove that DP-
FedASGP can maintain excellent applicability even under
higher privacy budgets.

Table VI and Fig. 6 present the experimental results of
global test accuracy for DP-FedAvg and DP-FedASGP (CNN
model) with ε = {0.1, 0.2, 0.5, 1, 2, 4} in the above experi-
mental environment. Note that a higher global test accuracy
in the experimental results indicates better applicability.

As the privacy budget increases, DP-FedASGP consistently
outperforms DP-FedAvg in global test accuracy. When ε =
0.1, DP-FedASGP achieves higher global test accuracy than
DP-FedAvg by approximately 2.82%, 6.47%, and 3.98% on
the MNIST and CIFAR-10/100 datasets, respectively. When
ε = 4, DP-FedASGP outperforms DP-FedAvg by about
0.43%, 1.73%, and 1.34% on the three datasets. However,
as ε increases from 0.1 to 4, the performance gap between
DP-FedASGP and DP-FedAvg gradually diminishes. Although
DP-FedASGP may result in a slight decrease in privacy
protection, it simplifies the gradients of the model during train-
ing. When training with low privacy budgets, DP-FedASGP
can provide sufficient privacy protection to the gradients.
This makes it challenging for adversaries to infer sensitive
information, even if some gradient information is exposed
through membership inference attacks. Since DP-FedASGP
only introduces noise perturbation into partial significant gra-
dients in the current training round and does not change the
amount of noise perturbation in essence. DP-FedASGP can
still perform initial perturbation for gradients according to
the privacy budgets. Therefore, the lower the privacy budgets,
the better the availability of DP-FedASGP. Additionally, DP-
FedASGP can maintain excellent applicability even under
higher privacy budgets.

E. Summary of Experiments

We implemented the experimental environments of DP-FL,
in which we conducted comprehensive experiments for evalu-
ating the performance of DP-FedASGP by comparing with
baselines such as DP-FedAvg, cpSGD, DP-FedSNLC, and
FedSMP. These experiments were carried out on the MNIST,
CIFAR-10/100, and Shakespeare datasets. The experimental
results show that the average global test accuracy of DP-
FedASGP on the four datasets and three models is about
2.62%, 4.71%, 0.45%, and 0.19% higher than DP-FedAvg,
cpSGD, DP-FedSNLC, and FedSMP, respectively. When train-
ing with low privacy budgets, DP-FedASGP can improve
model accuracy while ensuring privacy protection, exploring
a better balance between these two aspects efficiently. Even
under higher privacy budgets, DP-FedASGP can still maintain
excellent applicability. These improvements in DP-FedASGP
can enhance both the privacy protection and model accuracy
of the global model during the model training.

张本腾
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VI. CONCLUSION

Local gradients of DP-FL become excessively sparse in cer-
tain training rounds. Especially when training with low privacy
budgets, there is a risk of introducing excessive noise into the
uploaded gradients. This issue leads to a significant degrada-
tion in the accuracy of the global model. To effectively balance
the privacy protection and model accuracy of DP-FL, we
propose an approach called DP-FedASGP, which combines the
idea of gradient sparsification and DP to achieve both gradient
perturbation and gradient aggregation in DP-FL. Particularly,
DP-FedASGP constructs a gradient perturbation method based
on sparse vectors to evaluate and protect significant gradients
in each training round. Subsequently, to dynamically calculate
the aggregation weights of the gradients, DP-FedASGP em-
ploys a dynamic aggregation weights calculation method based
on the local loss function and the local data size. DP-FedASGP
then formulates the global model gradient aggregation method
to accelerate the convergence of the global model. Experiments
on four datasets and three models manifest that DP-FedASGP
can more effectively perturb significant gradients during each
training round. Thus, DP-FedASGP can enhance the accuracy
and availability of model training while ensuring privacy
protection. Therefore, DP-FedASGP can effectively explore a
better balance between privacy protection and model accuracy
of DP-FL.

APPENDIX A
PROOF OF THE THEOREM 1

According to Assumption 1, after introducing Laplace noise,
the output function is

F ′
model(D) = Fmodel(D)+

(Laplace1(
∆S

ε
), Laplace2(

∆S

ε
), ..., Laplaced(

∆S

ε
)),

(21)

where ∆S = maxD,D′ ∥Fmodel(D)− Fmodel(D
′)∥p, p is

typically set to 1, and its specific representation is given by

∆S = max
D,D′

(
d∑

i=1

|∆xi|). (22)

Because the output function F ′
model(D) satisfies the defini-

tion of ε-DP, which is given by (4). Then we can get

Pr [F ′
model(D) = O] ≤ eεPr [F ′

model(D
′) = O] . (23)

To prove Theorem 1, we need to prove the validity of (23).
As we aggregate the global gradient based on the gradient
weights, then we have

Fmodel(D
′) = (x′1, x

′
2, ..., x

′
d)

T

= (x1 +∆x1, x2 +∆x2, ..., xd +∆xd)
T
,

(24)

according to (24) we can get

∆S = max
D,D′

(

d∑
i=1

∣∣xi − x′i∣∣). (25)

Since DP-FedASGP needs to introduce Laplacian noise
into partial gradients, datasets D and D′ need to satisfy
the selection of the partial gradients. Therefore, we define

ω ∈ [0, 1] as the gradient selection coefficient. As ω → 1,
more gradients are selected. Thus, for any domain function
with input datasets D and D′, we have

Fmodel(D) = (x1, x2, . . . , xωd, . . . , xd)
T , (26)

Fmodel(D
′) = (x′1, . . . , x

′
ωd, . . . , x

′
d)

T

= (x1 +∆x1, . . . , xωd +∆xωd, . . . , xd)
T ,

(27)

with input datasets D, D′ and sensitivity ∆S, we can get

∆SN = max
D,D′

(

ωd∑
i=1

| xi − x′i |)

= max
D,D′

(

ωd∑
i=1

| ∆xi |) ≤ ∆S.

(28)

According to Assumption 2, we can get Fmodel(D) =
(0, 0, ..., 0)

T , Fmodel(D
′) = (∆x1,∆x2, ...,∆xwd, ..., 0)

T .
When O = (y1, y2, ..., yd)

T , we have

Pr[F ′
model(D) = O] =

ωd∏
i=1

ε

2∆SN
e
− ε

∆SN
|γi|, (29)

Pr[F ′
model(D

′) = O] =

ωd∏
i=1

ε

2∆SN
e

ε
∆SN

|∆xi−yi|. (30)

Then we can get

Pr[F ′
model(D) = O]

Pr[F ′
model(D

′) = O]
=

∏ωd
i=1

ε
2∆SN

e
− ε

∆SN
|yi|∏ωd

i=1
ε

2∆SN
e
− ε

∆SN
|∆xi−yi|

= e
ε

∆SN

∑ωd
i=1(|∆xi−yi|−|yi|).

(31)

To prove the validity of (23), we need to prove∑ωd
i=1 (|∆xi − yi| − |yi|) ≤ ∆SN . For each |∆xi− yi| − |yi|,

according to the absolute inequality, we have

ωd∑
i=1

(−|∆xi|) ≤
ωd∑
i=1

(|∆xi − yi| − |yi|) ≤
ωd∑
i=1

(|∆xi|), (32)

and

ωd∑
i=1

(|∆xi|) ≤ max
D,D′

(

ωd∑
i=1

|∆xi|) = ∆SN ≤ ∆S, (33)

according to (29), (30) and (33), we can get

ωd∑
i=1

(|∆xi − yi| − |yi|) ≤ ∆SN ≤ ∆S. (34)

We can get
∑ωd

i=1 (|∆xi − yi| − |yi|) ≤ ∆SN from (34).
Therefore, we can prove that (10) exit and F ′

model(D) can
satisfy the definition of DP, i.e. Pr [F ′

model(D) = O] ≤
eεPr [F ′

model(D
′) = O] holds. Thus, Theorem 1 concludes.
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APPENDIX B
PROOF OF THE THEOREM 2

We prove Theorem 2 from both ∀i Ri(D) ≥ Ri(D
′) and

∀i Ri(D) ≤ Ri(D
′). If both Ri(D) ≥ Ri(D

′) and Ri(D) ≤
Ri(D

′) can prove Theorem 2, then Theorem 2 is true.
First, we assume that ∀i Ri(D) ≥ Ri(D

′). Then, (35) and
(36) exist.

fi(D, κ) = Pr[Ri(D) + α < λ+ κ], (35)

gi(D, κ) = Pr[Ri(D) + α ≥ λ+ κ], (36)

where κ is the parameter input for the function fi(D, κ). Then
we have

fi(D, κ) = Pr[Ri(D) + α < λ+ κ]

≤ Pr[Ri(D
′) + α < λ+ κ]

= fi(D
′, κ),

(37)

gi(D, κ) = Pr[Ri(D) + α ≥ λ+ κ]

≤ Pr[Ri(D
′) + α+ χ ≥ λ+ κ]

≤ eε1/q Pr[Ri(D
′) + α ≥ λ+ κ]

= eε1/qgi(D
′, κ),

(38)

according to (37) and (38), we can get

Pr[M(D)]

≤
∫ +∞

−∞
Pr[κ = β]

∏
j∈i

fj(D
′, κ)

∏
j /∈i

eε1/qgj(D
′, κ)dκ

≤ (eε1/q)q Pr[M(D′)] ≤ eε1+ε2 Pr[M(D′)].

(39)

Following these steps, (39) can satisfy Definition 4. There-
fore, ε = ε1 + ε2 + ε3 holds.

Next, we assume that ∀i Ri(D) ≤ Ri(D
′). Then, we have

∀i Ri(D) ≥ Ri(D
′)−χ. Following the steps above, we have

fi(D, κ− χ) = Pr[Ri(D) + α < λ+ κ− χ]
≤ Pr[Ri(D

′)− χ+ α < λ+ κ− χ]
= fi(D

′, κ),

(40)

gi(D, κ− χ) = Pr[Ri(D) + α ≥ λ+ κ− χ]
≤ Pr[Ri(D

′) + α ≥ λ+ κ− χ]
≤ eε1/q Pr[Ri(D

′) + α ≥ λ+ κ]

= eε1/qgi(D
′, κ),

(41)

where χ is the change in the variable. As the independent
variable changes from κ to κ − χ, according to the ε-DP
definition, we can get

Pr[M(D)] =

∫ +∞

−∞
Pr[κ = β + χ]

∏
j∈i

fj(D
′, κ− χ)∏

j /∈i

eεi/qgj(D
′, κ− χ)dκ

≤
∫ +∞

−∞
eε2 Pr[κ = β]

∏
j∈i

fj(D
′, κ)

∏
j /∈i

eεi/qgj(D
′, κ)dκ

≤ (eε1/q)qeε2 Pr[M(D′)] = eε1+ε2 Pr[M(D′)].
(42)

Following the above steps, (42) can satisfy Definition 4,
ε = ε1 + ε2 + ε3 still holds. From both ∀i Ri(D) ≥ Ri(D

′)
and ∀i Ri(D) ≤ Ri(D

′), we can always get the total privacy
budget ε = ε1 + ε2 + ε3. In this way, Theorem 2 concludes.

APPENDIX C
PROOF OF THE THEOREM 3

We prove that the global model parameters Wt in T training
rounds can form a Cauchy sequence, thereby further demon-
strating the convergence of the DP-FedASGP. The Cauchy
sequence is a special case of a real number sequence that
plays an important role in mathematical analysis. A sequence
of real numbers xn is called a Cauchy sequence if, for any
given positive real number ρ > 0, there exists a positive integer
ψ such that for all m,n > ψ, the distance between any two
terms in the sequence |xn − xm| is less than ρ.

In other words, for any given precision requirement ε,
when the number of terms in the sequence is sufficiently
large, the distance between any two terms in the sequence is
close enough. This means that as the number of terms in the
sequence increases, the differences between the terms become
smaller and smaller, eventually approaching a limit. According
to Assumption 4, (16), and (19) we can get

∥gt∥ = ∥
1

k

k∑
i=1

∇Li(Wt)γt(i)∥

≤ 1

k

k∑
i=1

∥∇Li(Wt)γt(i)∥ ≤
1

k

k∑
i=1

Mi.

(43)

Let M = max{M1,M2, . . . ,Mk} represent the maximum
norm of all client local gradients. Therefore, we have

∥gt∥ ≤
1

k
· k ·M =M. (44)

Thus, the global gradient gt is also bounded. For all t, there
is a constant M that makes ∥gt∥ ≤ M . This means that we
can set the gradient clipping threshold C to a constant M .

Now that we have proved that the global gradient gt is
bounded. Next, we will prove that Wt is a Cauchy sequence,
i.e., for any given ρ > 0, there exists a positive integer ψ. For
any m,n > ψ, we have ∥Wm −Wn∥ < ρ. According to the
bounded properties of the gradient and the conditions of the
noise term, we have

∥Wm −Wn∥ =
∥(Wm −Wm−1) + (Wm−1 −Wm−2) · · ·+ (Wn+1 −Wn)∥
≤ η(∥gm∥+N) + η(∥gm−1∥+N) · · ·+ η(∥gn∥+N)

≤ η(M +N)(m− n),
(45)

where N is noise. We can choose a small enough learning
rate η such that η(M + N) < ρ. Suppose we choose η =

ρ
2(M+N)(m−n) . Then we have

∥Wm −Wn∥ < η(M +N)(m− n) = ρ

2
. (46)

Therefore, for a sufficiently large ψ, we have ∥Wm−Wn∥ <
ρ, which proves that Wt is a Cauchy sequence, converging to
a finite value. In this way, Theorem 3 concludes.
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